Minggu, 16 September 2012

Pengolahan Citra

Pengolahan citra merupakan proses pengolahan dan analisis citra yang banyak melibatkan persepsi visual. Proses ini mempunyai ciri data masukan dan informasi keluaran yang berbentuk citra. Istilah pengolahan citra digital secara umum didefinisikan sebagai pemrosesan citra dua dimensi dengan komputer. Dalam definisi yang lebih luas, pengolahan citra digital juga mencakup semua data dua dimensi. Citra digital adalah barisan bilangan nyata maupun kompleks yang diwakili oleh bit-bit tertentu.
Umumnya citra digital berbentuk persegi panjang atau bujur sangkar (pada beberapa sistem pencitraan ada pula yang berbentuk segienam) yang memiliki lebar dan tinggi tertentu. Ukuran ini biasanya dinyatakan dalam banyaknya titik atau piksel sehingga ukuran citra selalu bernilai bulat. Setiap titik memiliki koordinat sesuai posisinya dalam citra. Koordinat ini biasanya dinyatakan dalam bilangan bulat positif, yang dapat dimulai dari 0 atau 1 tergantung pada sistem yang digunakan. Setiap titik juga memiliki nilai berupa angka digital yang merepresentasikan informasi yang diwakili oleh titik tersebut.
Format data citra digital berhubungan erat dengan warna. Pada kebanyakan kasus, terutama untuk keperluan penampilan secara visual, nilai data digital merepresentasikan warna dari citra yang diolah. Format citra digital yang banyak dipakai adalah Citra Biner (monokrom), Citra Skala Keabuan ( gray scale ), Citra Warna ( true color ), dan Citra Warna Berindeks. 
Salah satu operasi pada pengolahan citra yaitu segmentasi citra. 

Segmentasi Citra

Segmentasi citra merupakan bagian dari proses pengolahan citra. Proses segmentasi citra ini lebih banyak merupakan suatu proses pra pengolahan pada sistem pengenalan objek dalam citra. Segmentasi citra (image segmentation) mempunyai arti membagi suatu citra menjadi wilayah-wilayah yang homogen berdasarkan kriteria keserupaan yang tertentu antara tingkat keabuan suatu piksel dengan tingkat keabuan piksel – piksel tetangganya, kemudian hasil dari proses segmentasi ini akan digunakan untuk proses tingkat tinggi lebih lanjut yang dapat dilakukan terhadap suatu citra, misalnya proses klasifikasi citra dan proses identifikasi objek. Adapun dalam proses segmentasi citra itu sendiri terdapat beberapa algoritma, diantaranya : algoritma Deteksi Titik, Deteksi Garis, dan Deteksi Sisi ( berdasarkan Operator Robert dan Operator Sobel ).
Gonzalez dan Wintz (1987) menyatakan bahwa segmentasi adalah proses pembagian sebuah citra kedalam sejumlah bagian atau obyek. Segmentasi merupakan suatu bagian yang sangat penting dalam analisis citra secara otomatis, sebab pada prosedur ini obyek yang diinginkan akan disadap untuk proses selanjutnya, misalnya: pada pengenalan pola. Algoritma segmentasi didasarkan pada 2 buah karakteristik nilai derajad kecerahan citra,
yaitu: discontinuity dan similarity. Pada item pertama, citra dipisahkan/dibagi atas dasar perubahan yang mencolok dari derajad kecerahannya. Aplikasi yang umum adalah untuk deteksi titik, garis, area, dan sisi citra. Pada kategori kedua, didasarkan atas thresholding, region growing, dan region spiltting and merging. Prinsip segmentasi citra bisa diterapkan untuk citra yang statis maupun dinamis. 
 DASAR TEORI

- EDGE DETECTION (DETEKSI TEPI)


Penentuan tepian suatu objek dalam citra merupakan salah satu wilayah pengolahan citra digital yang paling awal dan paling banyak diteliti. Proses ini seringkali ditempatkan sebagai langkah pertama dalam aplikasi segmentasi citra, yang bertujuan untuk mengenali objek-objek yang terdapat dalam citra ataupun konteks citra secara keseluruhan.

Deteksi tepi berfungsi untuk mengidentifikasi garis batas (boundary) dari suatu objek yang terdapat pada citra. Tepian dapat dipandang sebagai lokasi piksel dimana terdapat nilai perbedaan intensitas citra secara ekstrem. Sebuah edge detector bekerja dengan cara mengidentifikasi dan menonjolkan lokasi-lokasi piksel yang memiliki karakteristik tersebut.

Ada banyak cara-cara untuk mengintifikasikan bagian tepi suatu citra, diantaranya adalah sebagai berikut :

- OPERATOR GRADIEN


Pada citra digital f(x,y), turunan berarah sepanjang tepian objek akan bernilai maksimum pada arah normal dari kontur tepian yang bersesuaian. Sifat ini dipergunakan sebagai dasar pemanfaatan operator gradien sebagai edge detector.
Operator gradien citra konvensional melakukan diferensiasi intensitas piksel pada arah baris dan kolom, mengikuti persamaan local intensity variation berikut :



Nilai magnitudo gradien dari persamaan di atas dapat dinyatakan sebagai berikut:




Operator gradien dapat direpresentasikan oleh dua buah kernel konvolusi Gx dan Gy, yang masing-masing mendefinisikan operasi penghitungan gradien dalam arah sumbu x dan sumbu y yang saling tegak lurus.

Dalam kasus penghitungan gradien dengan persamaan local intensity variation, maka kernel Gx dan Gy dapat dirumuskan seperti berikut:



Dari operator gradien konvensional di atas, dapat diturunkan berbagai operator gradien berikut :
1.Operator Roberts
2.Operator Prewit
3.Operator Sobel

- OPERATOR LAPLACIAN

Dalam kondisi transisi tepian yang lebih tidak ekstrem, penggunaan operator turunan kedua lebih dianjurkan.




Turunan kedua memiliki sifat lebih sensitif terhadap noise, selain itu juga menghasilkan double edge. Oleh karena itu, operator Laplacian dalam deteksi tepi pada umumnya tidak dipergunakan secara langsung, namun dikombinasikan dengan suatu kernel Gaussian menjadi sebuah operator Laplacian of Gaussian.

Fungsi transfer dari kernel Laplacian of Gaussian dapat dirumuskan sebagai berikut:





- OPERATOR ZERRO CROSS
Metode Zero-cross menemukan edge dengan cara mencari zero crossings setelah memfilter I (Identitas) dengan filter a yang telah ditentukan.

- OPERATOR CANNY
Salah satu algoritma deteksi tepi modern adalah deteksi tepi dengan menggunakan metoda Canny. Berikut adalah diagram blok algoritma Canny :

CONTOH
                 Citra Asli                                             Citra Hasil Segmentasi 

Sumber:

Tidak ada komentar:

Posting Komentar